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Abstract :

Dynamic sensitivity of a one-dimensional stack of four rigid blocks with controlled initial gaps,
undergoing external harmonic vibrations is investigated. Time variation of the mass inertia and
the relative kinetic energy are considered as dynamic block stack attributes. Numerical simula-
tion is based on the Non Smooth Contact Dynamics (NSCD) time integration framework Solfec
(http://code.google.com/p/solfec/). Sensitivity space parameters include a range of excitation fre-
quencies and velocity amplitudes.
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1 Introduction

Many civil engineering structures can be considered as discrete, discontinuous systems with delib-
erate gaps or clearances ranging from simple dry stone walling or masonry to sophisticated complex
geometry graphite cores in nuclear power plants. In the latter case, such structural elements are vital
safety critical components and there is a need of predict their behaviour under both static and dy-
namic loadings. In spite of extraordinary advances in nonlinear computational mechanics, it is still
difficult to define the highly nonlinear mechanical response of such systems even if some homogeni-
sation technique allows relevant dynamic characterisation.
Indeed dynamic characterisation of such discontinuous structures is complex due to the free travel
and gaps as well as quantities such as local deformation or energy transfer between blocks. The
simplest way to explore and illustrate relevant observations is to study a one-dimensional model i.e.
a row comprising N rigid blocks driven by harmonic excitation of the side boundaries, where the
blocks are subject to dissipative collisions.

In this contribution we study the behaviour of a stack of four rigid blocks subject to external
harmonic excitation due to collisions with a rigid boundary undergoing prescribed velocity history.
Experiments and simulations on the column of beads have shown many interesting aspects, such
as clustered states and fluidized regime [1,2]. These phenomena depend on the local dissipative
mechanical interactions, on the initial configuration of the stack (chosen gap between the blocks)
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and also on the frequencies and amplitude of the external excitation. Moreover, the intention is to
focus on the possible self organisation of the clustered blocks into oscillatory patterns, associated with
distinct frequencies. The control parameters for the study are frequencies and velocity amplitude of
the boundary.
Details of the numerical model adopted are given first, followed by the study of the influence of
varying excitation frequencies and velocity amplitudes.

2 Numerical Model

2.1 System and simulation

A system of four identical rigid blocks is considered. With the length s = 36 mm and the section
12 ∗ 12 mm2 (mass density 2700 kg/m3, hence block masses equal to 0.014 kg) the blocks are
initially configured with a gap g between them within a horizontal box of width 12.5 mm and the
total length L = 4s+4g. The first block is initially in contact with the side boundary of the cell and
the gap is equal to g = 6mm. The cell is driven horizontally by a series of sinusoidal motions with
amplitude A0 = 12mm and, with frequencies f (angular frequencies ω = 2πf ) hence the boundary
velocity at the time t is defined as

Vcell(t) = A0ωcos(ωt)

with A = A0ω the normalised velocity amplitude in order to achieve constant velocity amplitude
for tests at different frequencies. A schematic drawing is given in Figure 1. As this is a one dimen-
sional problem, the friction between blocks and with the cell boundary is neglected µ = 0 and the
only dissipation mechanism is the restitution coefficient e for a collision between blocks, the value
of e = 0.9 is adopted.

Figure 1: Numerical model

Discrete numerical simulations were performed using the Non Smooth Contact Dynamics (NSCD)
method [5], which is specially convenient for rigid blocks. This method is based on an implicit time
integration of the equations of motion expressed in terms of velocities and considering generalized
nonsmooth contact laws describing noninterpenetration and dry friction between rigid blocks. This
formulation unifies the description of lasting contacts and collisions through the concept of an im-
pulse, which can be defined as the time integral of the contact force. The NSCD simulation was
applied using the Solfec platform [4].
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2.2 Dynamic sensitivity parameters

Dynamic sensitivity of the four block stack under harmonic excitation is studied by extracting time
histories of the two scalar parameters from the simulation results − the mass inertia and the relative
kinetic energy of the blocks system, which are conveniently captured from the NSCD/DEM method
[2,3]. Trajectories of both the left and the right sides of each block as well as the cell boundary
are traced, allowing visualisation of shocks between the blocks. For a series of simulations with
differing excitation frequencies, the maxima of the relative kinetic energy Emax achieved by the
system (comprising block i of mass mi, of position Yi(t) and velocity Vi(t)) is recorded for a given
boundary velocity amplitude and a given angular frequency:

Emax =

[

∑

i

mi(Vi(t)− Vcm(t))
2

]

max

where Vcm(t) is the velocity of the block system centroid. In addition, the maximum nondimensional
recorded mass inertia index during the excitation is extracted with the mass inertia Iz(t) defined as
follows:

Iz(t) =

[

∑

i mi(Yi(t)− Ycm(t))
2

]

Iref

and normalised with respect to the minimum mass inertia Iref the block group has when they are all

stuck together. Ycm(t) =
1

4

∑

4

i=1
Yi(t) is the trajectory of the center of mass of the stack.

Finally oscillatory behaviour of the stack can be illustrated with a phase plane diagram by comprising
the mass inertia index Iz vs the time rate of change of the mass inertia index dIz

dt
.

3 Constant velocity amplitude

Figure 2 illustrates trajectories (time evolution) of the cell boundary and of the left and the right
edges of the four blocks. With the angular frequency ω = 0.2 rad/s the four blocks move almost as
a single solid in phase with the boundary (Figure 2(a)). When the excitation frequency ω increases
to 0.5 rad/s (Figure 2(b)), the blocks move roughly together however not in phase with the boundary
movements. In Figure 2(d), ω = 2.0 rad/s a short transition is detected: from between t ≈ 25 to
t ≈ 50 seconds, where the stack appears to have split into two parts with two pairs of blocks each
moving in opposition phase. With ω = 1.0, ω = 3.0 and ω = 10.0 rad/s Figure 2(c,e,f) each of the
blocks moves independently all the time, experiencing multiple collisions.
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(a) ω = 0.2 rad/s (b) ω = 0.5 rad/s

A = A0ω = 2.4 mm/s, V (t) = Acos(ωt)

(c) ω = 1.0 rad/s (d) ω = 2.0 rad/s

(e) ω = 3.0 rad/s (f) ω = 10.0 rad/s

Figure 2: Trajectories time evolution Y of the left and the right sides of each block and cell, with

initial gap g = 6 mm for constant velocity amplitude A = 2.4 mm/s and excitation frequencies ω
(a) 0.2 rad/s, (b) 0.5 rad/s, (c) 1.0 rad/s, (d) 2.0 rad/s, (e) 3.0 rad/s and (f) 10.0 rad/s.

Figure 3 illustrates the maximum relative kinetic energy over the entire simulation time achieved
by the block system as a function of angular frequencies, for constant velocity amplitude A = 2.4
mm/s as before. Two peaks are noted: a small one at ω = 0.5 rad/s and a large one at ω = 2.0 rad/s.
It can be observed that there are less collisions between blocks with these angular frequencies, hence
there is less dissipation through collisions and consequently the stack of blocks can achieve greater
kinetic energy. Similarly to earlier illustrations, the maximum mass inertia over the entire simulation
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time as a function of the excitation angular frequency is plotted Figure 3(b). The curves have roughly
the same shape with the same peak at ω = 2.0 rad/s.
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Figure 3: (a) Maximum relative kinetic energy and (b) maximum mass inertia achieved by the block

system according to excitation frequency ω with initial gap between blocks g = 6 mm for velocity

amplitude A = 2.4 mm/s.

Figure 4(a) shows inertia time evolution of the stack, so one can follow how the blocks are dis-
tributed within the constrained cell during the simulation for a particular case of ω = 0.2 rad/s. Phase
plane diagram of the mass inertia index is plotted in Figure 4(b) and the blocks system doesn’t seem
to tend towards a steady state response. It should be noted that the problem considered is associated
with small gaps and very little freedom for the blocks to move, hence a larger cell size may allow
steady state oscillatory responses to develop.
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Figure 4: (a) Mass inertia index time evolution Iz and (b) phase plane diagram of the mass inertia

index of the stack with initial gap g = 6 mm for constant velocity amplitude A = 2.4 mm/s and

excitation frequency ω = 0.2 rad/s.

4 Constant excitation frequency, changing velocity amplitude

In the next problem, the influence of the changes in the amplitude for a given constant frequency is
considered.
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(a) ω = 1.0 rad/s, A = 2.4 mm/s (b) ω = 2.0 rad/s, A = 2.4 mm/s

(c) ω = 1.0 rad/s, A = 6.0 mm/s (d) ω = 2.0 rad/s, A = 6.0 mm/s
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(e) ω = 1.0 rad/s, A = 18.0 mm/s (f) ω = 2.0 rad/s, A = 18.0 mm/s

Figure 5: Trajectories time evolution Y of the left and the right sides of each block and cell, with

an initial gap g = 6 mm for constant excitation frequency ω = 1.0 rad/s and velocity amplitude (a)
A = 2.4 mm/s, (c) A = 6.0 mm/s, (e) A = 18.0 mm/s ; for constant excitation frequency ω = 2.0
rad/s (b) A = 2.4 mm/s (d) A = 6.0 mm/s and (f) A = 18.0 mm/s.

Figure 5 shows time evolution (trajectories) of the cell boundaries and the left and the right edges
of the four blocks for fixed constant excitation frequencies ω = 1.0 rad/s (a,c,e) and ω = 2.0 rad/s
(b,d,f). In both cases if the velocity amplitude is increased, the oscillation amplitude increases and
the stack tends to move as a single block assembly. In both cases the initial gap between blocks is
g = 6 mm.
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5 Conclusion

A horizontal row of four rigid blocks within a constrained cell has been excited with a harmonic
movement of the boundary. Gap between the blocks lead to frequent collisions with one another.
The system is dissipative with a restitution coefficient lower than 1. Despite its simplicity, the dy-
namic response of this system is found to be complex. With the constant velocity amplitude, the
system exhibited several response regimes as the angular frequency increased, from a solid like to
chaotic displacements within the stack. It was found that extracting maximum relative kinetic energy
as a function of the angular excitation frequency one could detect a more organised regime, as the
oscillatory behaviour appears less dissipative and associated with less collisions. Simulations with
a constant angular frequency and different velocity amplitude has also been considered. The blocks
system seems to become more organised with more external energy input.
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