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Abstract. Rocking motion of a single rigid rectangular block on rigid base subjected
to base acceleration function, with the assumption that friction between block and
base is large enough to prevent sliding motion, is analyzed. In literature, such analysis
has been carried out using a linearized equation of motion assuming slender geom-
etry of the block and small rotations. The analysis herein additionally addresses the
cases when the block is non-slender and can undergo large rotations. With the aim
to investigate the influence of assumptions introduced into linearized analysis on the
accuracy of solution, three types of analysis are carried out: (1) linearized analysis
assuming slender geometry of the block, (2) quasi-nonlinear analysis, i.e. linearized
analysis taking real geometry of the block into account, and (3) nonlinear analysis.
Newmark’s method with average acceleration is used for numerical integration and
Newton-Raphson iterative procedure is used to solve the nonlinear equation. Free and
forced rocking motion of slender and non-slender rigid rectangular block with vary-
ing initial conditions are analyzed. Analytical solutions of the linearized and quasi-

nonlinear equation of motion are compared to numerical results.

1 Introduction

There are a number of structures that can be observed as discontinuous assemblies of
bodies (blocks) when subjected to dynamic excitation of the ground. Such structures can
be inherently discontinuous, either as a matter of convenience (e.g. ease of construction
in structural masonry or dry stone walling) or as a deliberate strategy to avoid extensive
thermal stresses (e.g. graphite cores in Advanced Gas Cooled Reactors, AGR, in nuclear
power plants). Often these structures are deliberately discontinuous, organised as stacked
and/or interlocked assemblies with a regular pattern and technologically intended gaps and
clearances.

2 Analytical model
2.1 Equation of motion of a single block

Dynamic behavior of a single rigid rectangular block standing on a rigid base, with
the assumption that friction between the block and base is high enough to prevent sliding,
was first described by Housner [2]]. If sliding motion is prevented, rigid block subjected
to dynamic base excitation will either move translationally with the base or it will rock.



A simple dynamic model of a rocking rigid rectangular block on a rigid base subjected to
horizontal base acceleration function is shown in Figure|lf.

2h

Figure 1: Rocking rigid block model

For a relatively small amplitude of the base acceleration function, the block will move
along with the base without rocking. The equation of motion describing such behavior is

YXMp :mgRsina — Yx = maR cos a, (D)

where Y is the vertical reaction from the base and x is the distance between the point of
application of this reaction and edge D. In the limiting case, when the block is about to
start rocking, z — 0 and

a = gtana. 2)

When the amplitude of the base acceleration function becomes larger than the right hand
side of equation (2), rocking motion around corner A (6 < 0), described with

Il = —mgRsin (—a — 0) + mRiicos (—a — 6), (3)
or around corner D (6 > 0), described with
Iy = —mgRsin (o — 0) + mRiicos (a — 6), 4)

is initiated. In the above equations I is the moment of inertia with respect to one of the
base corners, m is the mass of the block (see Figure[I)), g is the gravity acceleration, R
is the half-diagonal, « is the angle of slenderness of the block, # and 0 are the angular
displacement (rotation) and angular acceleration of the block, respectively, and i is the
horizontal base acceleration function.

In order to use one equation to describe rocking motion in both directions, the follow-



ing equation is derived [1]:
Iof = —mgRsin [sgn (0) o — 0] + mRii cos [sgn () o — 6], 3)

where sgn () is the standard sign function.
The horizontal base acceleration function is here taken as harmonic

i = ag sin (wt) , 6)

where ay is its amplitude, and w its circular frequency, while ¢ is the time.

When the block switches from rocking around corner A to rocking around corner D (or
the other way around) it experiences an impact with the base. In this work it is assumed
that there is no loss of energy due to this impact.

2.2 Linearization of the equation of motion

In literature, a linearized version of equation @) is usually found [2, [1]]. However, it is
important to distinguish two separate steps in the procedure of linearizing basic equation
of motion. The sine and cosine functions in equation (5), can be substituted with the
following if the block experiences small rotations 6:

sin [sgn (0) a — 6] = sgn (0) sin () — € cos () @)

and
cos [sgn (0) a — 6] = cos () + sgn (A) Osin () . (8)

If only positive direction of excitation and positive rotations are observed, equation (5)
becomes

Iof = mRO [ag sin (wt) sin (a) + g cos ()] +mR [ag sin (wt) cos () — gsin (a)]. (9)

No limits are put on the geometry of the block in the above equation, but it is still
linear with respect to the unknown rotation #. This equation will be referred to as quasi-
nonlinear equation of motion of a single rigid rectangular block.

Assuming that the block is slender (the angle of slenderness, c, is small) and the
rotations are also small, equation (9) further simplifies to the following form:

6 — p?0 = —p? {a - % sin (wt)] , (10)

with p = %OR as the so-called frequency parameter, which is a second-order non-

homogeneous differential equation with constant coefficients. Analytical solution of this
differential equation in case of free rocking motion (w = 0) with initial conditions at time
t=0givenas #(0) =60pand 0 (0) =0is

0 (t) = (0o — «) cosh (pt) + . (11)



Analytical solution of differential equation (I0) in case of forced rocking motion given
with eq. @ with initial conditions at time ¢ = 0 given as 6 (0) = 0 and 6 (0) = 0 is:

ag 2a0
6 (t) = —acosh (pt) + wzi—i—gpQ sinh (pt) + a — cﬂi—i-gpz sin (wt) . (12)

The analytical solution enables defining an analytical condition for overturning of the
block due to given base acceleration function during motion with positive rotation. Start-
ing with the instant when the block rotates back to vertical position and its bottom side hits
the base, the above equation and its analytical solution do not longer apply. A differen-
tial equation such as equation (I0), but with signs corresponding to negative rotation and
initial conditions written at time of impact with the base, can be solved in order to obtain
analytical solution in that case.

In an attempt to derive an analytical solution of the equation of motion not limited to
slender blocks but only to small rotations, i.e. of the quasi-nonlinear equation of motion,
equation (9) becomes

0— mTR [g cos (a) + ag sin (wt) sin (a)] § = —p? |sin (o) — % cos (o) sin (wt) |, (13)
0

which is a second-order non-homogeneous differential equation with non-constant coeffi-
cients.
2.3 Time integration

Equation of motion (10) written at a time step ¢ (for any sign of rotation) is:
Io0; — mgRO; = —sgn (0;) mgRa + mRag sin (wt;) . (14)
Using Newmark’s integration method [3]], angular acceleration can be written as:

. 0 — 0, — Aty — (2 — B) At?6;_
f; = 1 1= (3=4) -, (15)
BAL2

and substituted into eq. (T4), which gives the following equation:

0; — 01 — Aty — (3 -8) At20;_4 B
BAL? !
—sgn (0;) mgRa + mRii;. (16)

Iy

In the above equation 6;_1, éi_l and éi_l, the rotation, angular velocity and angular ac-
celeration of the block at time step ¢ — 1 are known, and 6;, rotation of the block at time
step ¢, is the only unknown. It is important to note that the unknown 6; also appears inside
the sign function. Therefore, when using Newmark’s method of integration and solving
for unknowns 6;, §; and 6; at time step 1, it is necessary to use a procedure that will take



that into account. For that purpose, two solutions for the unknown rotation, 6;, are com-
puted at each time step: a solution with the assumption that #; < 0 and a solution with the
assumption that §; > 0. The correct solution is selected by checking whether the sign of
0; obtained from equation corresponds to the assumed sign of 6;.

2.4 Nonlinear equation of motion and solution procedure

When the assumption of small unknown rotations is not justifiable, nonlinear equation
() needs to be solved. In order to find a solution at each time step using Newmark’s
method of integration, equation (I3]) can be substituted into equation (5) to obtain equation:

Iy
BAL

F(6;) = 0; — 01 — Ath;_1 — (; — 5) AtQéi_l}

+ mgRsin [sgn (0;) a — ;] — mRii; cos [sgn (0;) a — 6;] = 0. (17)

To solve the nonlinear equation, Newton-Raphson iterative procedure is used.

Inside each iteration, j, the function F' (6; ;) given in equation needs to be calcu-
lated. If the value of this function is lower than a given tolerance, solution from the last
iteration, 0; ;, is the value of the rotation at that time step, ¢;. Otherwise, the first derivative
of the function F' (6; ;) with respect to the unknown 6; ; needs to be calculated as
ﬁ + (faoco — 1) mgR cos [sgn (0; ;) a — 0; 5]

+ (oo — 1) mRii; sin [sgn (6;,5) o — 0; 5] if 0; ;=0
ﬁ — mgRcos [sgn (6; ;) o — 0; 4]
—mRiii sin [sgn (92'7]‘) o — 92‘7]'] if Gi,j 75 0.

F'(6) = e

The above equation shows that the derivative F” (6; ;) is infinitely large when 6; ; = 0
because the derivative of the signum function is the Dirac delta function. It is possible
to calculate the exact value of this derivative for 6; ; € (—o0,0) U (0,+00), while the
derivative for 0; ; = 0 would make Newton-Raphson iterative procedure to crash. For this
reason the derivative F’ (6; ;) is assumed to be

F'(0; ;) = —mgRcos [sgn (0; ;) « — 0; ;] — mRii; sin [sgn (6; ;) a — 0 ;] (19)

for every value of 0; ;.

3 Numerical results

In order to compute the solution of rotation, angular velocity and angular acceleration
of single rigid rectangular block on rigid base subjected to horizontal base acceleration
function at each time step, three MatLAB codes were developed: the first one based on
linearized equation of motion, the second one based on quasi-nonlinear equation of motion
and the third one based on nonlinear equation of motion.



3.1 Slender block

The analyses were carried out for a slender rigid block with width 11,5 ¢m, height 50
cm and mass 6.329 kg (Figure [2). Angle of slenderness of the block is o = 0.2261 rad,
half-diagonal is R = 0.2565 m and frequency parameter is p = 5.3558 %.

Figure 2: Slender rigid rectangular block analyzed

Analysis of free rocking motion of the given slender block with no energy loss (n = 1)
and with initial rotation 8y = 0.15 rad is carried out with time step size dt = 0.0005 s for
5 s. Figure |3 shows results obtained from linearized (blue line) and nonlinear (red dashed

line) analysis.
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Figure 3: Rotation time-history for a free rocking motion of a rigid rectangular block with no
energy loss (linearized and nonlinear analysis)

Period of motion in nonlinear analysis is slightly larger than in the linearized analysis,
but both values are comparable to results of the analytical solution of the equation of

motion given by Housner [2]] (Table E[):



4 _ 1
THousner = —cosh ! ( 0 ) . (20)
p 0

1=
Calculation method Marking | Value
Housner’s approximate solution [2] | THousner | 1.309 s
Linearized numerical analysis Tiin 1.307 s
Nonlinear numerical analysis Thonlin 1.314 s
Quasi-nonlinear numerical analysis | Ty _noniin | 1.293 s

Table 1: Rocking period using approximate analytical solution [2], linearized, quasi-nonlinear and
nonlinear numerical analysis for a slender rigid block

Two series of analyses of forced rocking motion with no energy loss are carried out.
The forcing function given with eq. @ with amplitudes between 0.1ag 33 and Sag 3
and frequencies between 7 % and 207 %i is used. All the analyses last 10 s and the
final outcomes of the analyses are shown as results and compared. Figure 4 shows results
obtained by linearized analysis, Figure [5|shows results obtained by quasi-nonlinear analy-
sis, while Figure [f] shows results obtained by nonlinear analysis. Red rectangles mark the
parameters of ground excitation which led to overturning of the block during the analysis,
while blue rectangles mark the parameters that led to rocking behaviour but no overturning
of the block.
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Figure 4: Overturning/non-overturning area depending on frequency and amplitude of ground
acceleration function obtained during 10 seconds of linearized analysis of rocking motion of
slender rigid rectangular block
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Figure 5: Overturning/non-overturning area depending on frequency and amplitude of ground
acceleration function obtained during 10 seconds of quasi-nonlinear analysis of rocking motion of
slender rigid rectangular block
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Figure 6: Overturning/non-overturning area depending on frequency and amplitude of ground
acceleration function obtained during 10 seconds of nonlinear analysis of rocking motion of
slender rigid rectangular block



Linearized, quasi-nonlinear and nonlinear numerical analysis of dynamic behaviour
of slender rigid rectangular block under harmonic horizontal ground excitation result in
similar areas of overturning. This result is expected, since rocking (no overturning) is
only possible for small rotations, for which the difference between a linear and a nonlinear
analysis becomes negligible. Also, for a slender block sin (o) ~ « and cos (a) ~ 1
and the difference between the linearized and the quasi-nonlinear analysis also becomes
negligible.

3.2 Nonslender block

All the analyses carried out in the previous section were dealing with rigid rectangular
blocks that can be considered slender because of having height to width ratio lower than
2.8. Blocks with height to width ratio greater than 2.8 [2]] have large angle of slenderness,
therefore cannot be considered slender, and can rock with large rotations.

Analyses are now carried out for a non-slender rigid block with width 50 cm, height
50 ¢m and mass 27.5 kg (Figure[7). Angle of slenderness of the block is o = 0.7854 rad,
half-diagonal is R = 0.3536 m and frequency parameter is p = 4.5618 %.
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Figure 7: Model of analyzed non-slender rigid rectangular block

Results of the linearized and the nonlinear numerical analysis of rocking motion of a
non-slender rigid rectangular block are shown in Figure 8| Initial rotation of the block is
6o = 0.75 rad. As expected, the results of the nonlinear numerical analysis (red dashed
line in Figure [§) now differ from the results of the linearized analysis more than before
(blue solid line in Figure [§). The period of rocking motion is somewhat shorter in the
nonlinear numerical analysis (Figure[§]and Table[2), while in the quasi-nonlinear analysis
it is significantly shorter.

Two series of analyses of forced rocking motion with no energy loss are carried out.
The forcing function given with eq. @) with amplitudes between 0.1ag 7 and 5ag 75 and
frequencies between 7 % and 207 % is used. All the analyses last 10 s and the final
outcomes of the analyses are shown as results and compared. Figure [9] shows results ob-
tained from linearized analysis, Figure [10[shows results from the quasi-nonlinear analysis,
while Figure [TT] shows results obtained from nonlinear analysis. Red rectangles mark the
parameters of ground excitation which led to overturning of the block during the analysis,
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Figure 8: Rotation time-histories of free rocking motion of non-slender rigid rectangular block
with no energy loss (linearized and nonlinear analysis)

Calculation method Marking | Value
Housner’s approximate solution [2] | THousner | 3-325 s
Linearized numerical analysis Tiin 3.236 s
Nonlinear numerical analysis Trontin 3.17 s
Quasi-nonlinear numerical analysis | T4 _poniin | 2.15 s

Table 2: Period of free rocking using approximate numerical solution [2] and linearized,
quasi-nonlinear and nonlinear numerical analysis for non-slender rigid block

while blue rectangles mark the parameters that led to rocking behaviour but no overturning
of the block.

Linearized and nonlinear numerical analysis result in completely different areas of
overturning. The horizontal boundary between the overturning and non-overturning area
visible in the linearized analysis (Figure [9) is also visible in the nonlinear analysis, but
corresponds to larger amplitudes of the acceleration function (Figure [TT)), as it also does
for the quasi-nonlinear analysis. Note that in the first case the condition for initiation of
rocking is a > ga, while in the other two cases the condition is a > gtan («), which
explains this result. In this example the linearized analysis grossly underestimates the
stability of the non-slender rocking block. Quasi-nonlinear analysis (Figure [I0) shows
area of overturning similar to the nonlinear analysis, although it slightly overestimates
stability of the block. Even though one may argue that the quasi-nonlinear analysis could
be used for non-slender blocks, these results show that it gives non-conservative estimate
for the condition of overturning/no overturning of the block. There are cases of rocking
motion in quasi-nonlinear analysis where rotations are large and the assumption of small
rotations is not justifiable. In these cases the linearized analysis and the quasi-nonlinear
analysis both give inaccurate results and nonlinear analysis has to be carried out.
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Figure 9: Overturning/non-overturning area depending on frequency and amplitude of ground
acceleration function obtained during 10 seconds of linearized analysis of rocking motion of
non-slender rigid rectangular block
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Figure 10: Overturning/non-overturning area depending on frequency and amplitude of ground

acceleration function obtained during 10 seconds of quasi-nonlinear analysis of rocking motion of
non-slender rigid rectangular block
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Figure 11: Overturning/non-overturning area depending on frequency and amplitude of ground
acceleration function obtained during 10 seconds of nonlinear analysis of rocking motion of
non-slender rigid rectangular block

4 Conclusions and future work

Equation of motion of a single rigid rectangular block on a rigid base subjected to
horizontal base acceleration function, with the assumption that friction between block and
base is high enough to prevent sliding, is numerically solved. Depending on the assump-
tions that either the block is slender and experiences small rotations or it just experiences
small rotations (regardless on the geometry of the block) there are two versions of equation
of motion: linearized and quasi-nonlinear equation of motion, in addition to the original
nonlinear equation.

Linearized and nonlinear equation of motion are solved numerically at discrete time
steps using Matlab and compared for both slender and non-slender rigid rectangular block.
Free rocking motion and forced rocking motion are observed. Analyses showe that, while
the linearized and the nonlinear procedure result in similar dynamic behavior for slender
blocks, dynamic behavior and outcomes (such as overturning) obtained from these anal-
yses significantly differ for non-slender blocks. Quasi-nonlinear and nonlinear procedure
result in similar behaviour for both slender and non-slender blocks but in the case of non-
slender block the quasi-nonlinear analysis slightly overestimates block’s stability and thus
the nonlinear analysis should be carried out to estimate block’s stability, regardless of the
numerical cost.
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