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ABSTRACT: We investigate numerically granular piles exhibiting steady surface flows. A vertical monolayer
of frictional grains is confined between two vertical sidewalls. Above a critical flowing rate and in agreement
with experiments (Taberlet, Richard, Valance, Losert, Pasini, Jenkins, & Delannay 2003), surface flows at in-
clination larger than the angle of repose appear. Below thesesurface flows, particles exhibit a very slow creep
motion whose velocity decays exponentially with depth (Lemieux & Durian 2000, Komatsu, Inagaki, Nak-
agawa, & Nasuno 2001, Crassous, Metayer, Richard, & Laroche 2008). Here, we focus on the correlations
between the surface flow and the creeping region in the case ofsteady and fully developed flows. We found that
the height of the surface flow and the characteristic decay length of the creeping zone are linked through an
affine relation which depends on the micromechanical parameters. Therefore the surface flow and the creeping
zone are characterized by only one length.

1 INTRODUCTION

Surface flows of dry granular material over an appar-
ently static bed have recently received great attention.
Indeed, contrary to flows down rigid inclines (Berton,
Delannay, Richard, Taberlet, & Valance 2003, Bi, De-
lannay, Richard, & Valance 2006, Delannay, Louge,
Richard, Taberlet, & Valance 2007, Kumaran 2008),
the particle volume fraction varies through the flow
height (Richard, Valance, Ḿetayer, Sanchez, Cras-
sous, Louge, & Delannay 2008). Thus, this relatively
simple flow configuration permits the simultaneous
observation of several different regimes and is ideal
to test existing theories or to inspire new ones which
aim is to describe and predict the whole behavior
of flowing granular matter (Berzi & Jenkins 2011).
Near the free surface, there is a dilute region, in
which grains experience mainly binary and instanta-
neous collisions (Jenkins & Richman 1985). Below
this collisional layer, one can observe a dense colli-
sional regime, in which correlated motion seems to
play a fundamental role (Pouliquen 2004, Mitarai &
Nakanishi 2007, Staron 2008) and, finally, at the bed,
grains experience enduring contacts that permit creep
with an exponentially decaying velocity profile (Ko-
matsu, Inagaki, Nakagawa, & Nasuno 2001, Cras-
sous, Metayer, Richard, & Laroche 2008). To study
such kind of flows, two different experimental set-
ups have been employed. In the first one, particles
are continuously fed to the top of a heap with con-

stant mass flow rate (Komatsu, Inagaki, Nakagawa,
& Nasuno 2001, Taberlet, Richard, Valance, Losert,
Pasini, Jenkins, & Delannay 2003, Taberlet, Richard,
Henry, & Delannay 2004, Jop, Forterre, & Pouliquen
2005, Richard, Valance, Ḿetayer, Sanchez, Crassous,
Louge, & Delannay 2008). The other one, consists
of a partially filled drum which is rotated at a con-
stant angular velocity around a horizontal axis (Orpe
& Khakhar 2001, Hill, Gioia, & Tota 2003, Taberlet,
Richard, & John Hinch 2006, F́elix, Falk, & D’Ortona
2007). In the former, steady and fully developed (i.
e. invariant in the main flow direction) flows are ob-
tained, while in the latter, they are steady, but not
fully developed. Experimental and numerical results
obtained using the two devices indicates that (i) un-
like flow over rigid beds (Pouliquen 1999) the angle
of inclination of the free surface and the depth of the
flow above the bed are fully determined by the mass
flow rate over the heap and the angular velocity of
the rotating drum, (ii) the presence of frictional side-
walls plays a fundamental role in controlling surface
granular flows, permitting steady and fully developed
flows at angles of inclination of the free surface much
higher than the angle of repose of the granular ma-
terial and (iii) below the surface flow the grains are
not static but move in an intermittent way i.e. they
creep. The comprehension of such creeping flow, and
its connection with the surface flow, are still debated
topics. Komatsu et al. (Komatsu, Inagaki, Nakagawa,
& Nasuno 2001) show that the mean velocity of the



creep region decays exponentially with depth, and the
characteristic decay length is approximately equal to
the particle size,d:

〈v(h)〉 = v0 exp(−y/λ) with λ ≈ d (1)

The exponential character of the vertical velocity
profile has been confirmed by a careful study of
the creeping motion using Dynamic Light Scater-
ring (Crassous, Metayer, Richard, & Laroche 2008).

A combined experimental and numerical
study (Richard, Valance, Ḿetayer, Sanchez, Cras-
sous, Louge, & Delannay 2008) has shown that
displacement of the grains in the so-called creeping
zone is intermittent even in the case of steady and
fully developed flows. Moreover, the probability for
a grain to move was found to decays with depth.
Interestingly those authors show that the character-
istic length of the velocity decayλ is proportional
to the height of the continuously flowing layer.
Unfortunately, due to experimental limitations, the
flow studied are relatively thin and the validity of that
result in the case of thick flows is an open question.
To address this point, we will study, by means of
numerical simulations flows of granular matter down
a heap. To obtain flows of several tens of grain size
with satisfactory statistics we choose to work with
quasi 2D system, i.e. a vertical monolayer of grains
confined between two vertical sidewalls.
The papers is organized as follows. The section
2 describes details of the numerical method used.
The properties of the flowing region are studied in
sections3. Section4 is devoted to the study of the
creeping zone and, particularly, to the determini-
nation of the characteristic length of the velocity
decay. The rheology of the flow, as for it, is studied
in section 5. Finally our conclusions are presented in
section 6.

2 SIMULATION METHODOLOGY

We use molecular dynamics simulations (MD).
Grains are cohesionless spheres of diameter uni-
formly distributed between0.8d and 1.2d and with
massm. The system is spatially periodic in the flow
direction with length and width respectively of25d
and 1.1d (see Figure 1). The cell is bounded by a
bumpy bed at the bottom and an open top. There-
fore, this monolayer is considered and studied as a
quasi two dimensional system. The initial configu-
ration consists of an ordered square array of non-
overlapping spheres with random velocities which is
subsequently allowed to settle under gravityg on top
of the bumpy bottom. The latter is built using the fol-
lowing method: We first use as bottom a gluing flat
wall. The grains contacting that wall are then stuck on
it and the whole (the wall and the glued grains) form
the bumpy bottom. The system is then inclined at the
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Figure 1: Sketch of the set-up and cartesian coordinate system
with unit vectorx along the flow, normal to the free surface and
perpendicular to sidewalls with origin at the bottom of the cell.

angleθ with respect to the horizontal and the mea-
surements of the flow properties are performed once
the flow is steady and fully developed.

We use our own implementation (Richard, Valance,
Métayer, Sanchez, Crassous, Louge, & Delannay
2008, Taberlet & Richard 2006) of the classical dis-
crete element method method where Newton’s equa-
tions of motion for a system ofN soft grains are in-
tegrated (Walton 1984, Cundall & Strack 1979). This
technique is able to reproduce a broad range of ex-
perimental results including gravity driven flows (see
Ref. Delannay, Louge, Richard, Taberlet, & Valance
2007 and references therein). It requires an explicit
expression for the forces that act between two contact-
ing grains. Since this technique is well known, we just
present here the forces used in this work. For the nor-
mal force between two overlapping grains,Fn a stan-
dard linear spring-dashpot interaction model (Cundall
& Strack 1979) is used,Fn = knδnij − γnvn, where
δn is the normal overlap,nij the normal unit vector of
the contact,kn is the spring constant,γn the damping
coefficient, andvn the normal relative velocity. The
use of a damping coefficient is necessary to model the
dissipation characteristic of granular materials. Like-
wise the tangential force is modeled as a linear elas-
tic and linear dissipative force in the tangential direc-
tion is given byFt = −kt∆sij − γtvt, wherekt is the
tangential spring constant,∆sij the tangential over-
lap, γt the tangential damping, andvt the tangential
velocity at the contact point. The magnitude of∆sij
is truncated as necessary to satisfy the Coulomb law
|Ft| ≤ µg |Fn|, whereµg is the grain-grain coefficient.
Impacts against the sidewalls are treated as collisions
with a sphere of infinite mass and radius, which mim-
ics a large flat surface. The sidewall-grain friction co-
efficient is calledµw. The presented simulations were
carried out with the following set of materials param-
eters: the normal spring constantkn = 5.6× 106mg/d
and the tangential spring constantkt = 2kn/7 (Sḧafer,
Dippel, & Wolf 1996). The normal damping coeffi-
cient is chosen such as the normal coefficient restitu-
tion ise= 0.88. The tangential damping is set to zero.
The equations are integrated using a velocity-verlet
algorithm and a time step∆t = 7× 10−5

√

d/g.
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Figure 2: (Color online) Vertical profile of solid fractionφ at
inclinations shown versus depthy/d (the bottom of the cell is
located at0) for µw = 0.3 andµ = 0.3. Inset variations of the
scalelν with tanθ. The dashed line corresponds to the best fit.

3 DETERMINATION OF THE HEIGHT OF THE
FLOWING REGION

In order to determine the depth of the flowing layer,
we follow the method described in (Richard, Valance,
Métayer, Sanchez, Crassous, Louge, & Delannay
2008) where that height is obtained from the vertical
profiles of the packing fraction. Figure 2 shows a solid
fraction profile of the system obtained forµg = 0.3
andµw = 0.3. From the latter profile, one can distin-
guish three regions in the depth of the flow. From the
bottom: a dense quasistatic bulk whereφ0 ≈ 0.8, a
flowing layer where solid fraction decreases dramati-
cally and a very dilute zone where spheres experience
rare collisions.

These results are similar to the experimental ones
(Taberlet, Richard, Valance, Losert, Pasini, Jenkins,
& Delannay 2003) and very close to numerical results
obtained in 3D (Richard, Valance, Ḿetayer, Sanchez,
Crassous, Louge, & Delannay 2008). In the latter
work the heighth of the flowing layer is defined by
fitting the solid fraction profiles using the following
expression:

φ(y) =
φ0

2

(

1 + tanh(−(y− y0)

lν
)

)

, (2)

whereφ = φ0/2 for y = y0 andlν = h/2 is the char-
acteristic length of the flowing zone. Variations of the
length lν with tan θ is reported on the inset of fig-
ure 2. Whatever the values of the grain-grain friction
coefficient and of the grain-wall riction coefficient,lν
increases linearly withtan θ which is consistent with
previous results (Richard, Valance, Métayer, Sanchez,
Crassous, Louge, & Delannay 2008). That linear re-
lation holds for all the simulations we performed but
the obtained slopes and intercepts depend on values
of friction coefficients (µg andµw). The study of this
effect, which is out of the scope of the present paper,
will be adressed elsewhere.
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Figure 3: (Color online) Semi-log velocity profilesVx/
√
gd at

inclinations shown versus depthy/d (inset: linear-linear profiles)
for friction coefficientµg = 0.3 andµw = 0.3.

4 DETERMINATION OF THE
CHARACTERISTIC LENGTH OF THE
VELOCITY DECAY

Velocity profiles for friction coefficientsµg = 0.3 and
µw = 0.3 are reported on Figure 3. Similarly to what
is observed with the solid fraction profiles, one can
define three regions: (i) the top layers where grain
motions are clearly ballistic, (ii) the dense flow zone
where the velocity is roughly linear and (iii) the creep-
ing zone where the velocity seems to decay exponen-
tially.

Such profiles have been observed in several ex-
perimental works (Crassous, Metayer, Richard, &
Laroche 2008, Richard, Valance, Métayer, Sanchez,
Crassous, Louge, & Delannay 2008). In agreement
with the literature (Komatsu, Inagaki, Nakagawa, &
Nasuno 2001, Crassous, Metayer, Richard, & Laroche
2008) we also observe that in the creeping zone,
the grain velocity decays exponentially asVx ∝
exp(y/λ) where λ is the characteristic length for
this exponential decay. In such a zone, the grains
move by infrequent, rapid jumps between successive
cages (Richard, Valance, Ḿetayer, Sanchez, Cras-
sous, Louge, & Delannay 2008). In the literature (Ko-
matsu, Inagaki, Nakagawa, & Nasuno 2001, Cras-
sous, Metayer, Richard, & Laroche 2008), the authors
report a characteristic length of the exponential de-
cay close to the grain size. However, the angles of the
flows and thus the sizes of the surface flows were rel-
atively small. On the contrary, here, due to important
sidewall friction and flow rate, the angle may reach
more than55◦ and the size of the surface flows can
reach several tens of grain size. By fitting the velocity
profiles in the creeping zone, we determine the value
of λ. Our results, shown on Fig. 4, clearly demon-
strate that for important flow angles, the exponential
characteristic length can be much larger than the grain
size. Interestingly, both the friction coefficients be-
tween grains and between walls and grains influence
the relation betweenh andλ although this relation



is always affine. Qualitatively, we can observe that
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Figure 4: (Color online) Characteristic length of the velocity de-
cayλ versus the heighth of the flowing zone with(a) constant
friction coefficientµg = 0.3 and(b) constant friction coefficient
µw = 1.

increasing the grain-wall friction coefficient leads to
more important values ofλ for the same surface flow
depth (see Fig. 4a). Increasing the grain-grain fric-
tion drives to the same consequence (see Fig. 4b) but
the effect is much less important. Unfortunately our
statistics are not yet important enough to quantify the
effect of those friction coefficients on the linear rela-
tion.
Our results not only confirm the experimental find-
ing (Richard, Valance, Ḿetayer, Sanchez, Crassous,
Louge, & Delannay 2008) that both the flow depth,
h, and the characteristic decay length in the creep-
ing zoneλ are proportional but also extend it to thick
flows whereλ≫ d. Therefore both the dense flow and
creeping zones are characterized by only one length
which means that the two zones cannot be treated sep-
arately. Clearly any theory which aim is to describe
and predict the whole behavior of flowing granular
matter should take into account the interactions be-
tween those two zones or treat them as a whole.
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Figure 5: (Color online) The effective coefficient of frictionµ =
τ/P at inclinations shown versus inertial numberI for friction
coefficientsµg = 0.3 andµw = 0.6.

5 RHEOLOGY

Recently, a purely local rheological description of
dense granular flows has been developed success-
fully (GDR-MiDi 2004, da Cruz, Emam, Prochnow,
Roux, & Chevoir 2005). Based on a coulombic fric-
tion model it relates the value of the effective coeffi-
cient of frictionµ (i.e. the ratio of tangential stressτ
to normal stressP ) to a non-dimensional numberI,
called the inertial number, which compares the typ-
ical time scale of microscopic rearrangements with
the typical time scale of macroscopic deformations:
µ = τ/P andI = γ̇d/

√

P/ρs, whereρs is the grain
density andγ̇ the shear rate. Note that the so-called
inertial numberI is the square root of the Savage
number (Savage 1984) also called the Coulomb num-
ber (Ancey, Coussot, & Evesque 1999). It has been
empirically shown (Jop, Forterre, & Pouliquen 2005)
that, in the case of dense granular flows, the effec-
tive coefficient of frictionµ of the system can be ex-
pressed by the following expression:

µ(I) = µs +
µ2 − µs

I0/I + 1
.

In the latter expression,µs corresponds to the angle
of repose of the material, i.e. the angle obtained when
approaching the quasistatic regime. Consequently, the
granular material flows only if the yield criterionτ >
µsP is satisfied. In strongly sheared regimes (I ≫ 1),
µ(I) grows asymptotically towardsµ2. It should be
pointed out that theµ(I) rheology should be applied
only to monodirectional flows. Indeed the extension
to the3D case is not straightforward since stress and
strain tensors are not always aligned (Cortet, Bonamy,
Daviaud, Dauchot, Dubrulle, & Renouf 2009, Brodu,
Richard, & Delannay 2013). Our system is strongly
confined by the two sidewalls between which the
grains flow, so one may wonder if theµ(I) rheology
is still valid in that case. Figure 5 reports curvesµ(I)
for several angles and forµ = 0.3 andµw = 0.6. Let



us point out that we report only the points that corre-
spond to the dense flow zone and to the creeping zone.
We remove those corresponding to the gaseous layer
where theµ(I) rheology is not relevant. Although the
points corresponding to the creeping zone have not
been removed, it is not relevant to apply theµ(I) rhe-
ology in that zone, where it predicts that the system
does not flow. It can be shown that theµ(I) rheol-
ogy remains valid for anglesθ ≤ 45◦. The only differ-
ences between the curves correspond to largeI, thus
to regimes close to the gaseous one. Forθ = 50◦ sig-
nificant differences are visible. This is probably due
to the fact that for such an important angle, the dense
regime is not clearly obtained.
Since our flow is mainly unidirectional theµ(I) rhe-
ology holds in the dense flow zone, an only in that
zone, as long as the solid fraction is large enough.
In order to captures the dense flow and creeping
zones long range correlations should be taken into ac-
count. A possible way to overcome this flaw, consists
in introducing non-local effects (see e.g. (Pouliquen
& Forterre 2009, Kamrin & Koval 2012)). Another
questionable point is that such a rheology does not
use the notion of granular temperature which is at the
base of the kinetic theory (Jenkins & Richman 1985)
even in the case of dense flows. This may explain the
discrepancy observed in Fig. 5 for the largest angle.

6 CONCLUSIONS

In summary, we have numerically studied granular
piles exhibiting steady and fully developed surface
flow. Our system is a vertical monolayer of grains
confined between two sidewalls. As expected, we ob-
tained a rapid surface flow –characterized by its depth
h– and, below this flow, a slow creep motion in which
the grain velocity decays exponentially with a char-
acteristic lengthλ. Contrary to previous studies we
show that the latter length can of the order of several
tens of grain sizes for large flow angles. We also con-
firm thanh andλ are related through and affine law
whose parameters depend on grain-grain and grain-
wall friction coefficients.
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